Convergence Structures for Categories
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F01%3APU20349" target="_blank" >RIV/00216305:26210/01:PU20349 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Convergence Structures for Categories
Original language description
We introduce and study the concept of a convergence structure for a category. Such a structure is obtained by endowing each object of the category with a convergence class subjected to some basic convergence axioms. As a tool for expressing the convergence we use categorically viewed nets which generalize the usual ones. We describe relations between convergence structures and closure operations for categories and investigate separatedness and compactness of objects of a category with a convergence struucture.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F00%2F1466" target="_blank" >GA201/00/1466: Continuous and set-theoretical methods in topological and algebraic structures</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2001
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Categorical Structures
ISSN
0927-2852
e-ISSN
—
Volume of the periodical
9
Issue of the periodical within the volume
6
Country of publishing house
BE - BELGIUM
Number of pages
14
Pages from-to
557-570
UT code for WoS article
—
EID of the result in the Scopus database
—