A categorical approach to convergence
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F16%3APU113274" target="_blank" >RIV/00216305:26210/16:PU113274 - isvavai.cz</a>
Result on the web
<a href="http://www.doiserbia.nb.rs/img/doi/0354-5180/2016/0354-51801612329S.pdf" target="_blank" >http://www.doiserbia.nb.rs/img/doi/0354-5180/2016/0354-51801612329S.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2298/FIL1612329S" target="_blank" >10.2298/FIL1612329S</a>
Alternative languages
Result language
angličtina
Original language name
A categorical approach to convergence
Original language description
We define the concept of a convergence classes on an object of a given category by using certain generalized nets for expressing the convergence. The resulting topological category, whose objects are the pairs consisting of objects of the original category and convergence classes on them, is then investigated. We study full subcategories of this category which are obtained by imposing some natural convergence axioms. In particular, we find sufficient conditions for the subcategories to be cartesian closed. We also investigate behavior of the closure operators associated with the convergence in a natural way.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/LO1202" target="_blank" >LO1202: NETME CENTRE PLUS</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
FILOMAT
ISSN
0354-5180
e-ISSN
2406-0933
Volume of the periodical
30
Issue of the periodical within the volume
12
Country of publishing house
RS - THE REPUBLIC OF SERBIA
Number of pages
10
Pages from-to
3329-3338
UT code for WoS article
000393218000020
EID of the result in the Scopus database
2-s2.0-85008395142