Analysis of Algorithms for Radial Basis Function Neural Network
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F07%3APU70369" target="_blank" >RIV/00216305:26210/07:PU70369 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Analysis of Algorithms for Radial Basis Function Neural Network
Original language description
The contribution describes the analysis of algorithms for the hidden layer construction of network and for learning of the Radial Basis Function neural network (RBFN). We compared results obtained by a using of learning algorithms LMS (Least Mean Square)and gradient algorithms and results obtained by a using of algorithms APC-III and K-means for hidden layer contruction of neural network. The principles and algorithms given below have been used in an application for object classification that was developed at Brno University of Technology.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
JD - Use of computers, robotics and its application
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2007
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Personal Wireless Communications
ISSN
1861-2288
e-ISSN
—
Volume of the periodical
2007
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
9
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—