ALMOST COMPLEX PROJECTIVE STRUCTURES AND THEIR MORPHISMS
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F09%3APU83839" target="_blank" >RIV/00216305:26210/09:PU83839 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
ALMOST COMPLEX PROJECTIVE STRUCTURES AND THEIR MORPHISMS
Original language description
We discuss almost complex projective geometry and the relations to a distinguished class of curves. We present the geometry from the viewpoint of the theory of parabolic geometries and we shall specify the classical genera- lizations of the concept of the planarity of curves to this case. In particular, we show that the natural class of J-planar curves coincides with the class of all geodesics of the so called Weyl connections and preserving of this class turns out to be the necessary and sufficient condition on diffeomorphisms to become homomorphisms or antihomomorphisms of almost complex projective geometries.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ARCHIVUM MATHEMATICUM
ISSN
0044-8753
e-ISSN
—
Volume of the periodical
2009
Issue of the periodical within the volume
45
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
10
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—