Reduction Theorems for Principal and Classical Connections
Result description
We prove general reduction theorems for gauge natural operators transforming principal connections and classical linear connections on the base manifold into sections of an arbitrary gauge natural bundle. Then we apply our results to the principal prolongation of connections. Finally we describe all such gauge natural operators for some special cases of a Lie group G.
Keywords
Gauge natural operatorreduction theoremprincipal prolongation
The result's identifiers
Result code in IS VaVaI
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Reduction Theorems for Principal and Classical Connections
Original language description
We prove general reduction theorems for gauge natural operators transforming principal connections and classical linear connections on the base manifold into sections of an arbitrary gauge natural bundle. Then we apply our results to the principal prolongation of connections. Finally we describe all such gauge natural operators for some special cases of a Lie group G.
Czech name
—
Czech description
—
Classification
Type
Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Acta Mathematica Sinica
ISSN
1439-8516
e-ISSN
—
Volume of the periodical
26
Issue of the periodical within the volume
1
Country of publishing house
CN - CHINA
Number of pages
16
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—
Basic information
Result type
Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP
BA - General mathematics
Year of implementation
2010