Applications of the fractional calculus: On a discretization of fractional diffusion equation in one dimension
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F10%3APU86148" target="_blank" >RIV/00216305:26210/10:PU86148 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Applications of the fractional calculus: On a discretization of fractional diffusion equation in one dimension
Original language description
The paper discusses the problem of the classical and fractional diffusion models. It is known that the classical one fails in heterogeneous structures with locations where particles move with a large speed for a long distance. If we replace the second derivative in the space variable in the classical diffusion equation by a fractional derivative of order less than two, we obtain the fractional diffusion equation (FDE) which is more useful in this case. In this paper we introduce a discretization of FDEbased on the theory of the difference fractional calculus and we sketch a basic numerical scheme of its solving. Finally, we present some examples comparing classical and fractional diffusion models.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Communications
ISSN
1335-4205
e-ISSN
—
Volume of the periodical
12
Issue of the periodical within the volume
1
Country of publishing house
SK - SLOVAKIA
Number of pages
7
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—