Neural network learning algorithms comparison on numerical prediction of real data
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F10%3APU88088" target="_blank" >RIV/00216305:26210/10:PU88088 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Neural network learning algorithms comparison on numerical prediction of real data
Original language description
In this paper we concentrate on prediction of future values based on the past course of a variable, Traditionally this task is solved using statistical analysis - first a time-series model is constructed and then statistical prediction algorithms are applied to it in order to obtain future values. This paper describes two learning algorithms for training Multi-layer perceptron networks, widely known Back propagation learning algorithm and Levenberg- Marquardt algorithm. Both of these methods are appliedto solve prediction of real numerical time series represented by Czech household consumption expenditures. Tested dataset includes twenty-eight observations between the years 2001 and 2007. The observations are represented by quarterly data and the goalis to predict three future values for first three quarters of 2008. Predicted values of both experiments are compared with measured values. In the next step, a comparison of neural network topology efficiency regarding to learning algori
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BC - Theory and management systems
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Mendel 2010
ISBN
978-80-214-4120-0
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
280-285
Publisher name
Neuveden
Place of publication
Neuveden
Event location
Brno University of Technology
Event date
Jun 23, 2010
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000288144100043