Time Series forecasting using machine learning methods
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F09%3A00144532" target="_blank" >RIV/62156489:43110/09:00144532 - isvavai.cz</a>
Alternative codes found
RIV/00216305:26210/09:PU86182
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Time Series forecasting using machine learning methods
Original language description
In this paper we concentrate on prediction of future values based on the past course of that variable, traditionally these are solved using statistical analysis - first a time-series model is constructed and then statistical prediction algorithms are applied to it in order to obtain future values. This paper describes Radial Basis Functions (RBF) Neural Network and Two-level Grammatical Evolution. Both these methods are applied to solve prediction of simplified numerical time series. Sample dataset includes forty generated observations and the goal is to predict five future values.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Information Society
ISSN
1581-9973
e-ISSN
—
Volume of the periodical
A
Issue of the periodical within the volume
1
Country of publishing house
SI - SLOVENIA
Number of pages
4
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—