On categories of ordered sets with a closure operator
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F11%3APU80142" target="_blank" >RIV/00216305:26210/11:PU80142 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On categories of ordered sets with a closure operator
Original language description
We define and study two categories of partially ordered sets endowed with a closure operator. The first category has order-preserving and continuous maps as morphisms and it is shown to be concretely isomorphic to a category of ordered sets endowed witha compatible preorder. The second category studied has closed maps as morphisms and it is proved to be cartesian closed. As examples, consequences of these results for categories of the usual closure operators and, in particular, of topological spaces are discussed.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Publicationes Mathematicae Debrecen
ISSN
0033-3883
e-ISSN
—
Volume of the periodical
78
Issue of the periodical within the volume
1
Country of publishing house
HU - HUNGARY
Number of pages
9
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—