Spray Cooling Unit for Heat Treatment of Stainless Steel Sheets
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F14%3APU109131" target="_blank" >RIV/00216305:26210/14:PU109131 - isvavai.cz</a>
Result on the web
<a href="http://www.scopus.com/record/display.url?eid=2-s2.0-84904035281&origin=resultslist&sort=plf-f&src=s&st1=hnízdil&sid=C4F5B65991CF15C6559F2A1962AE4A66.ZmAySxCHIBxxTXbnsoe5w%3a340&sot=b&sdt=b&sl=20&s=AUTHOR-NAME%28hnízdil%29&relpos=0&relpos=0&citeCnt=0&sear" target="_blank" >http://www.scopus.com/record/display.url?eid=2-s2.0-84904035281&origin=resultslist&sort=plf-f&src=s&st1=hnízdil&sid=C4F5B65991CF15C6559F2A1962AE4A66.ZmAySxCHIBxxTXbnsoe5w%3a340&sot=b&sdt=b&sl=20&s=AUTHOR-NAME%28hnízdil%29&relpos=0&relpos=0&citeCnt=0&sear</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4028/www.scientific.net/AMR.936.1720" target="_blank" >10.4028/www.scientific.net/AMR.936.1720</a>
Alternative languages
Result language
angličtina
Original language name
Spray Cooling Unit for Heat Treatment of Stainless Steel Sheets
Original language description
Stainless steel sheets are successively heated to a temperature of 1150degree of Celsia and cooled until ambient temperature during the production process. Requirements for high cooling rates of stainless steel sheets producers lead to use water as a cooling medium. The information about cooling intensity (heat transfer coefficient) of different nozzles configurations is necessary for designing cooling sections. Although many researchers deal with water spray cooling, actually a general correlation for predicting heat transfer coefficient for wide range of nozzles configurations does not exists. That is the reason why heat transfer coefficient for different nozzles configurations can be only obtained by laboratory measurements. Heat transfer coefficient is mostly influenced by water impingement density and impact velocity. However other factors e.g. water temperature and velocity of the sheet can influence the heat transfer coefficient. Optimized design of the cooling unit with high cooling intensity and low water consumption was achieved by appropriate choice of these parameters. The moving experimental sheet was cooled from a temperature of 900 degree of Celsia to a temperature of 50 degree of Celsia with various configurations of nozzles. The tests shown that heat transfer coefficient was increasing with water impingement density and impact velocity. Increasing water temperature from 20 degree of Celsia to 80 degree of Celsia caused a decrease of the heat transfer coefficient and Leidenfrost temperature. The effect of velocity is negligible when velocities are between 25 and 100 m/min. The cooling unit was designed according to laboratory measurements to fulfill the stainless steel producer's requirements. The measurements which were done in an industrial plant confirmed the accuracy of heat transfer coefficient obtained in the laboratory. The maximum difference between laboratory and plant measurements was 15%.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
20303 - Thermodynamics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advanced Materials Research
ISSN
1022-6680
e-ISSN
1662-8985
Volume of the periodical
936
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
5
Pages from-to
1720-1724
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-84904035281