On the Detection of Permutation Polynomials
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F14%3APU110201" target="_blank" >RIV/00216305:26210/14:PU110201 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-642-55361-5_39" target="_blank" >http://dx.doi.org/10.1007/978-3-642-55361-5_39</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-55361-5_39" target="_blank" >10.1007/978-3-642-55361-5_39</a>
Alternative languages
Result language
angličtina
Original language name
On the Detection of Permutation Polynomials
Original language description
Multivariate Public keyPublic key cryptosystems are widely spread and ever evolving domain. This study aims to find new techniques to characterize and detect permutation polynomialsPermutation polynomial over finite fieldsFinite field, which enable us to find trapdoor, one way, functions that are essential to build robust cryptosystems. Let f be a polynomial over Fq, a finite fieldFinite field of order q, where q=pm, p is a prime number. If f induces a bijective mapping, one-to-one mapping, of Fq, we call f a permutation polynomialPermutation polynomial over Fq. In order to detect these polynomials, we constructed a program implementing multiple algorithmsAlgorithm based on Galois fieldGalois field arithmetic. As a result, we have the number of all possible permutation polynomialsPermutation polynomial in the fields F4, F8 and F16
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Algebra, Geometry and Mathematical Physics
ISBN
978-3-642-55360-8
ISSN
2194-1009
e-ISSN
—
Number of pages
9
Pages from-to
651-660
Publisher name
Springer Berlin Heidelberg
Place of publication
France
Event location
Mulhouse
Event date
Oct 24, 2011
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000347610400039