Polynomial orbits in direct sum of finite extension fields
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F03%3A00000061" target="_blank" >RIV/61988987:17310/03:00000061 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Polynomial orbits in direct sum of finite extension fields
Original language description
Let K_1, ..., K_n be finite extensions of the field F. We describe the structure of finite orbits and determine its precycle and cycle lengths in the direct sum of these fields which are induced bz polynomials over F.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F01%2F0471" target="_blank" >GA201/01/0471: Algebraic, analytic and combinatorial methods of number theory</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2003
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Studia Universitatis
ISSN
—
e-ISSN
—
Volume of the periodical
2
Issue of the periodical within the volume
?erven
Country of publishing house
RO - ROMANIA
Number of pages
5
Pages from-to
73-77
UT code for WoS article
—
EID of the result in the Scopus database
—