Water jet cooling of aluminium alloy
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F15%3APU114251" target="_blank" >RIV/00216305:26210/15:PU114251 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Water jet cooling of aluminium alloy
Original language description
Jet cooling is used in many industrial applications. A typical application is the ingot casting process. Cooling water flows into a mold, where it is distributed through a system of channels into holes that are spaced very closely together. For better homogenization, the water flows from the leading edge and then impacts the surface of an aluminum ingot. [1] To obtain realistic results from numerical simulations, it is necessary to know the boundary conditions for each cooling scenario. It is not possible to use analytic solutions or multiphysics simulation software to obtain realistic heat transfer coefficient (HTC) curves which represent the cooling intensity. Boundary conditions can be obtained by experimentally reproducing the same conditions in the laboratory and measuring temperature dependence over time. Evaluating the data is done using the inverse task, which calculates the surface temperature and HTC. Temperatures are measured using shielded thermocouples which are installed very close to the sample surface. The final goal of this work is to experimentally investigate the cooling intensity during the casting process of ingots. Two types of cooling regime - continuous and pulse and changing the amount of cooling water were studied. The HTC curves from the calculated surface temperature data are used as boundary conditions for a numerical model which can simulate temperature distribution inside the ingot during the cooling process.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
JG - Metallurgy, metal materials
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LO1202" target="_blank" >LO1202: NETME CENTRE PLUS</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
METAL 2015, 24rd International Conference on Metallurgy and Materials, Conference Proceedings
ISBN
978-80-87294-58-1
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
1439-1444
Publisher name
TANGER Ltd.
Place of publication
Ostrava
Event location
Brno
Event date
Jun 3, 2015
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000374706100233