All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Water jet cooling of aluminium alloy

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F15%3APU114251" target="_blank" >RIV/00216305:26210/15:PU114251 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Water jet cooling of aluminium alloy

  • Original language description

    Jet cooling is used in many industrial applications. A typical application is the ingot casting process. Cooling water flows into a mold, where it is distributed through a system of channels into holes that are spaced very closely together. For better homogenization, the water flows from the leading edge and then impacts the surface of an aluminum ingot. [1] To obtain realistic results from numerical simulations, it is necessary to know the boundary conditions for each cooling scenario. It is not possible to use analytic solutions or multiphysics simulation software to obtain realistic heat transfer coefficient (HTC) curves which represent the cooling intensity. Boundary conditions can be obtained by experimentally reproducing the same conditions in the laboratory and measuring temperature dependence over time. Evaluating the data is done using the inverse task, which calculates the surface temperature and HTC. Temperatures are measured using shielded thermocouples which are installed very close to the sample surface. The final goal of this work is to experimentally investigate the cooling intensity during the casting process of ingots. Two types of cooling regime - continuous and pulse and changing the amount of cooling water were studied. The HTC curves from the calculated surface temperature data are used as boundary conditions for a numerical model which can simulate temperature distribution inside the ingot during the cooling process.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JG - Metallurgy, metal materials

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/LO1202" target="_blank" >LO1202: NETME CENTRE PLUS</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    METAL 2015, 24rd International Conference on Metallurgy and Materials, Conference Proceedings

  • ISBN

    978-80-87294-58-1

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    1439-1444

  • Publisher name

    TANGER Ltd.

  • Place of publication

    Ostrava

  • Event location

    Brno

  • Event date

    Jun 3, 2015

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000374706100233