Well-posedness of the second-order linear singular Dirichlet problem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F15%3APU115112" target="_blank" >RIV/00216305:26210/15:PU115112 - isvavai.cz</a>
Result on the web
<a href="http://www.degruyter.com/view/j/gmj.2015.22.issue-3/issue-files/gmj.2015.22.issue-3.xml" target="_blank" >http://www.degruyter.com/view/j/gmj.2015.22.issue-3/issue-files/gmj.2015.22.issue-3.xml</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/gmj-2015-0023" target="_blank" >10.1515/gmj-2015-0023</a>
Alternative languages
Result language
angličtina
Original language name
Well-posedness of the second-order linear singular Dirichlet problem
Original language description
Conditions guaranteeing well-posedness of the problem u '' =p 0 (t)u+q 0 (t) , u(a)=0 , u(b)=0 , are established. Here p 0 ,q 0 :]a,b[→R are locally Lebesgue integrable functions and may have singularities at t=a and t=b .
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Georgian Mathematical Journal
ISSN
1572-9176
e-ISSN
1572-9176
Volume of the periodical
2015 (22)
Issue of the periodical within the volume
3
Country of publishing house
DE - GERMANY
Number of pages
11
Pages from-to
409-419
UT code for WoS article
000360882800013
EID of the result in the Scopus database
2-s2.0-84941043316