Fredholm alternative for the second-order singular Dirichlet problem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F14%3A00430385" target="_blank" >RIV/67985840:_____/14:00430385 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1186/1687-2770-2014-13" target="_blank" >http://dx.doi.org/10.1186/1687-2770-2014-13</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1186/1687-2770-2014-13" target="_blank" >10.1186/1687-2770-2014-13</a>
Alternative languages
Result language
angličtina
Original language name
Fredholm alternative for the second-order singular Dirichlet problem
Original language description
Consider the singular Dirichlet problem u '' = p(t)u + q(t); u(a) = 0, u(b) = 0, where p,q :]a,b[-> R are locally Lebesgue integrable functions. It is proved that if integral(b)(a) (s - a)(b - s)[p(s)](-) ds < +infinity, then the Fredholm alternative remains true.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Boundary Value Problems
ISSN
1687-2770
e-ISSN
—
Volume of the periodical
—
Issue of the periodical within the volume
13
Country of publishing house
US - UNITED STATES
Number of pages
15
Pages from-to
1-15
UT code for WoS article
000333595900001
EID of the result in the Scopus database
—