All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Overcooling in overlap areas during hydraulic Descaling

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F16%3APU119879" target="_blank" >RIV/00216305:26210/16:PU119879 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.17222/mit.2015.164" target="_blank" >http://dx.doi.org/10.17222/mit.2015.164</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.17222/mit.2015.164" target="_blank" >10.17222/mit.2015.164</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Overcooling in overlap areas during hydraulic Descaling

  • Original language description

    The production and processing of high-quality grades of steel are connected with the oxidation at high temperatures. Unwanted scales are formed on the steel surface, which is usually heated to over 900 °C. These scales are often removed by hydraulic descaling during the production. In most cases where long, flat products are produced, one row of descaling nozzles is used. As these flat jet nozzles are arranged in a row, the water spray from one nozzle interferes with the spray from the neighboring nozzles. This zone is called an overlap area and often even more scales remain here after the descaling process. An increased amount of the scales left behind results in a lower quality of a final product. A typical configuration with an inclination and twist angle of 15° was studied. Heat-transfer coefficients (HTC) and surface temperatures were measured in the overlap area and compared with the values obtained from undisturbed areas. It was found that the overlap area is grossly overcooled. The results were compared with a new configuration, where the twist angle was changed to 0°, and it was found that the overcooling was significantly reduced. The temperature measurement showed that an increased thickness of the scales in the overlap area can also be caused by surface overcooling because the scales change the material properties with the temperature, and they are therefore more difficult to remove. The new configuration with the twist angle of 0° seems promising for improving the quality of hydraulic descaling.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

    <a href="/en/project/LO1202" target="_blank" >LO1202: NETME CENTRE PLUS</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Materiali in tehnologije

  • ISSN

    1580-2949

  • e-ISSN

    1580-3414

  • Volume of the periodical

    50

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    SI - SLOVENIA

  • Number of pages

    4

  • Pages from-to

    575-578

  • UT code for WoS article

    000381658000019

  • EID of the result in the Scopus database

    2-s2.0-84983637813