All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Two-dimensional finite element model of vowel production: properties of self-oscillating vocal folds interacting with fluid flow

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F17%3APU126118" target="_blank" >RIV/00216305:26210/17:PU126118 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.pevoc.org/" target="_blank" >http://www.pevoc.org/</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Two-dimensional finite element model of vowel production: properties of self-oscillating vocal folds interacting with fluid flow

  • Original language description

    The current study concerns finite element (FE) model of flow-induced self-sustained oscillation of the human vocal folds (VF) in interaction with vocal tract (VT) acoustics. Two dimensional (2D) FE model consists of the fluid model (involving the VT and trachea) and the structure model (the VF). Geometry of the VT was converted from magnetic resonance images (MRI) data for production of a Czech vowels. The VF model is based on widely used Scherer’s M5 geometry with four-layered structure comprising epithelium, superficial lamina propria (SLP), ligament and muscle. For solving fluid-structure interaction explicit coupling scheme is applied with separate solvers for the structure and fluid domain. Acoustic wave propagation is obtained from solution of compressible NS equations. Phonation of the Czech vowels [a:], [i:] and [u:] were simulated and influence of thickness and material characteristics of the SLP on vocal folds vibrations and produced sound were analysed. Using this model was also analyzed th

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    10307 - Acoustics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů