Water Pollution Impact Assessment of Beijing from 2011 to 2015: Implication for Degradation Reduction
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F17%3APU127170" target="_blank" >RIV/00216305:26210/17:PU127170 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.3303/CET1761252" target="_blank" >http://dx.doi.org/10.3303/CET1761252</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3303/CET1761252" target="_blank" >10.3303/CET1761252</a>
Alternative languages
Result language
angličtina
Original language name
Water Pollution Impact Assessment of Beijing from 2011 to 2015: Implication for Degradation Reduction
Original language description
Water resource is an essential element for all lives on this planet. With the rapid growth of the economy, urban population, as well as the changes of land use, water degradation issues are becoming more severe. Beijing, as the capital and one of the megacities of China, faces the issue of water degradation. To investigate the water degradation variations of Beijing, the present study has determined the water degradation impacts of the major pollutants, regarding water eutrophication, acidification, and ecotoxicity, and used the cumulative water degradation potential (WDP) curves to effectively identify the most critical pollutants for water degradation reduction. The results show that: (1) The water eutrophication fluctuated at around 9,500 kt CODeq from 2011 to 2015, and phosphorus (P) is the critical pollutant for monitoring eutrophication reduction. (2) The water ecotoxicity decreased during this period, and reduced dramatically from 2013 to 2015, with a reduction rate up to 91 %. This dramatic change is related to the reduction of coal consumption and steel production. Hg and Cd are identified as the two most critical pollutants for ecotoxicity reduction. (3) The water acidification decreased gradually from 229.71 kt SO2eq to 167.51 kt SO2eq, with a decrease rate of 27 %. SO2 is the most critical pollutant for acidification reduction. In conclusion, the overall water degradation decreased during this period, by 1.5 % for water eutrophication, 27 % acidification and 90 % for ecotoxicity. Phosphorus (P), SO2, Cr, and Hg are the most important pollutants for water degradation reduction of Beijing.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20402 - Chemical process engineering
Result continuities
Project
<a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Chemical Engineering Transactions
ISBN
978-88-95608-51-8
ISSN
2283-9216
e-ISSN
—
Number of pages
6
Pages from-to
1525-1530
Publisher name
Italian Association of Chemical Engineering - AIDIC
Place of publication
Neuveden
Event location
Tianjin
Event date
Aug 21, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—