All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Water Pollution Impact Assessment of Beijing from 2011 to 2015: Implication for Degradation Reduction

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F17%3APU127170" target="_blank" >RIV/00216305:26210/17:PU127170 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.3303/CET1761252" target="_blank" >http://dx.doi.org/10.3303/CET1761252</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3303/CET1761252" target="_blank" >10.3303/CET1761252</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Water Pollution Impact Assessment of Beijing from 2011 to 2015: Implication for Degradation Reduction

  • Original language description

    Water resource is an essential element for all lives on this planet. With the rapid growth of the economy, urban population, as well as the changes of land use, water degradation issues are becoming more severe. Beijing, as the capital and one of the megacities of China, faces the issue of water degradation. To investigate the water degradation variations of Beijing, the present study has determined the water degradation impacts of the major pollutants, regarding water eutrophication, acidification, and ecotoxicity, and used the cumulative water degradation potential (WDP) curves to effectively identify the most critical pollutants for water degradation reduction. The results show that: (1) The water eutrophication fluctuated at around 9,500 kt CODeq from 2011 to 2015, and phosphorus (P) is the critical pollutant for monitoring eutrophication reduction. (2) The water ecotoxicity decreased during this period, and reduced dramatically from 2013 to 2015, with a reduction rate up to 91 %. This dramatic change is related to the reduction of coal consumption and steel production. Hg and Cd are identified as the two most critical pollutants for ecotoxicity reduction. (3) The water acidification decreased gradually from 229.71 kt SO2eq to 167.51 kt SO2eq, with a decrease rate of 27 %. SO2 is the most critical pollutant for acidification reduction. In conclusion, the overall water degradation decreased during this period, by 1.5 % for water eutrophication, 27 % acidification and 90 % for ecotoxicity. Phosphorus (P), SO2, Cr, and Hg are the most important pollutants for water degradation reduction of Beijing.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20402 - Chemical process engineering

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Chemical Engineering Transactions

  • ISBN

    978-88-95608-51-8

  • ISSN

    2283-9216

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    1525-1530

  • Publisher name

    Italian Association of Chemical Engineering - AIDIC

  • Place of publication

    Neuveden

  • Event location

    Tianjin

  • Event date

    Aug 21, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article