All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Optimal energy supply structures for industrial food processing sites in different countries considering energy transitions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F18%3APU127075" target="_blank" >RIV/00216305:26210/18:PU127075 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.energy.2017.05.062" target="_blank" >http://dx.doi.org/10.1016/j.energy.2017.05.062</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.energy.2017.05.062" target="_blank" >10.1016/j.energy.2017.05.062</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Optimal energy supply structures for industrial food processing sites in different countries considering energy transitions

  • Original language description

    This study focuses on analysing the most energy efficient utility system supply structure in terms of carbon emissions, primary energy efficiency and energy costs. In the German food processing industry, the state-of-the-art technologies in the utility supply structure are a gas fired steam boiler for steam generation and ammonia chillers for chilled water generation. Low investment costs and its durability are attractive for industrial production sites. But, given the ongoing energy transition to renewable energy, opportunities to reduce emissions will become increasingly important. There are other energy supply options, such as Combined Heat and Power and Heat Pumps, that need to compete against the conventional energy supply systems. In the short-term, countries with presently high electricity Grid Emissions Factors (GEF) such as Germany and the USA, the use of decentralised CHP results in savings of primary energy and emissions. This option is less attractive for countries with already low GEF such as Norway. It is also less attractive in the long-term for countries like Germany as the on-going energy transition towards renewables is anticipated to decrease the current GEF by 50% in 2030. In these cases of low GEF, HP solutions provide the lowest emissions and highest primary energy efficiency.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20401 - Chemical engineering (plants, products)

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Energy

  • ISSN

    0360-5442

  • e-ISSN

    1873-6785

  • Volume of the periodical

    neuveden

  • Issue of the periodical within the volume

    146

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    12

  • Pages from-to

    112-123

  • UT code for WoS article

    000428104100011

  • EID of the result in the Scopus database

    2-s2.0-85020164112