Experimental study of in-line heat treatment of 1.0577 structural steel
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F18%3APU129739" target="_blank" >RIV/00216305:26210/18:PU129739 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S2351978918310011" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2351978918310011</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.promfg.2018.07.305" target="_blank" >10.1016/j.promfg.2018.07.305</a>
Alternative languages
Result language
angličtina
Original language name
Experimental study of in-line heat treatment of 1.0577 structural steel
Original language description
In-line heat treatment is frequently used in rolling mills because it offers a significant improvement of rolled product mechanical properties with costs benefits. This method allows achieving required mechanical properties without necessity of additional alloying and rolled product reheating. Disadvantage of in-line heat treatment is fixed rolling velocity which is typically strong parameter in controlling of final cooling regime. Water flow rate, pressure, type, size and position of nozzles, water temperature are examples of parameters influencing cooling intensity and the Leidenfrost temperature. Laboratory experimental study is needed to design well controllable cooling system which allows keeping required cooling regimes for various product steel grades and dimensions. This paper describes experimental stages of cooling system designing procedure for improving structural steel 1.0577 mechanical properties. First experimental part began with building of cooling intensities (heat transfer coefficients - HTC) database for tested several nozzles configurations. Then required cooling regime was selected according to the continuous cooling transformation diagram. The target was obtaining harder (quenched) material with good ratio between elongation and strength. The final equalization temperature was set to 600 °C in the whole body. Numerical simulations of cooling followed based on the knowledge of heat transfer coefficients from database. Appropriate nozzle configuration was chosen and numerical results were experimentally validated using modified Jomminy test. A hardness was improved significantly up to thickness of 12 mm (275 HV under sprayed surface decreasing to 180 HV in 12 mm). When the required material structure and hardness verified appropriateness of cooling regime by previous tests, the first design of cooling section was done. Full scale sample was heat treated on a new experimental stand (Karusel) which was developed by HeatLab. It enabled to simulate
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20303 - Thermodynamics
Result continuities
Project
<a href="/en/project/LO1202" target="_blank" >LO1202: NETME CENTRE PLUS</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
17th International Conference on Metal Forming (METAL FORMING 2018)
ISBN
9781510869561
ISSN
2351-9789
e-ISSN
—
Number of pages
8
Pages from-to
1696-1603
Publisher name
Elsevier
Place of publication
neuveden
Event location
Toyohashi
Event date
Sep 16, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000547828500208