All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A multiphysics model of the electroslag rapid remelting (ESRR) process

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F18%3APU136971" target="_blank" >RIV/00216305:26210/18:PU136971 - isvavai.cz</a>

  • Result on the web

    <a href="http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=10&SID=D1mYtjVweLYpwOM65oz&page=1&doc=1" target="_blank" >http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=10&SID=D1mYtjVweLYpwOM65oz&page=1&doc=1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.applthermaleng.2017.11.100" target="_blank" >10.1016/j.applthermaleng.2017.11.100</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A multiphysics model of the electroslag rapid remelting (ESRR) process

  • Original language description

    This paper presents a numerical model (3D) incorporating multiphysics for an electroslag rapid remelting (ESRR) process of industrial scale. The electromagnetic field is calculated in the whole system including the electrode, molten slag, ingot, graphite ring, and mold; the interaction between the turbulent flow and electromagnetic field is calculated for all fluid domains (molten slag and melt pool); the thermal field is calculated in the molten slag, ingot and mold. The solidification of the billet ingot and the formation of solid slag skin layer along the T-mold are considered as well. The formation of the skin layer adjacent to the T-mold can remarkably impact the electric current path in the whole system. The modeling result indicates that no skin layer would form on the graphite ring, as the local electric current density is very high. In contrast, a thick slag skin layer forms along the inclined part of the T-mold, blocks the electric current path there. Those modeling results are verified by experiments. A typical non-axis symmetry flow/thermal field in the slag region, which has been observed in-situ from the slag surface during operation, is predicted. Detailed analyses of the quasi-steady state results of flow/thermal fields are presented. A symmetric melt pool (profile of the solidifying mushy zone) of the ingot is predicted, which agrees with the experiments. (C) 2017 Elsevier Ltd. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20303 - Thermodynamics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Applied Thermal Engineering

  • ISSN

    1359-4311

  • e-ISSN

  • Volume of the periodical

    130

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    8

  • Pages from-to

    1062-1069

  • UT code for WoS article

    000424177600093

  • EID of the result in the Scopus database