All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A Coupled Magnetohydrodynamics (MHD) and Thermal Stress-Strain Model to Explore the Impact of Gas Cooling on Ingot Solidification Shrinkage in Vacuum Arc Remelting (VAR) Process

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F24%3APU152034" target="_blank" >RIV/00216305:26210/24:PU152034 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/article/10.1007/s11663-024-03254-4" target="_blank" >https://link.springer.com/article/10.1007/s11663-024-03254-4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11663-024-03254-4" target="_blank" >10.1007/s11663-024-03254-4</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A Coupled Magnetohydrodynamics (MHD) and Thermal Stress-Strain Model to Explore the Impact of Gas Cooling on Ingot Solidification Shrinkage in Vacuum Arc Remelting (VAR) Process

  • Original language description

    An advanced 2D axisymmetric magnetohydrodynamics model, including calculations for electromagnetic, thermal, and flow fields, fully coupled with a thermal stress-strain model, allowing the computation of solid mechanical parameters like stress, strain, and deformation within the ingot of the vacuum arc remelting process is presented. This process encounters challenges due to solidification shrinkage, which causes losing contact between the ingot and the mold, reducing the cooling efficiency of the system, resulting in a deeper melt pool and decreasing ingot quality. Herein, the width of the air gap along the ingot, the precise position of contact between the ingot and mold, and the profile of the melt pool, affected by gas cooling, are calculated. The global pattern of transport phenomena, such as (electro-vortex) flow and electromagnetic fields in the bulk of the ingot, is insensitive to helium gas cooling through the shrinkage gap. However, including gas cooling significantly improves heat removal through the mold, which consequently reduces the pool depth of the Alloy 718 ingot, leading to an improvement in the quality of the ingot.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20303 - Thermodynamics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE

  • ISSN

    1073-5615

  • e-ISSN

    1543-1916

  • Volume of the periodical

    55

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    10

  • Pages from-to

    4408-4417

  • UT code for WoS article

    001306287700001

  • EID of the result in the Scopus database

    2-s2.0-85203084677