All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F19%3APU129161" target="_blank" >RIV/00216305:26210/19:PU129161 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/abs/pii/S1364032118306828" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S1364032118306828</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.rser.2018.09.027" target="_blank" >10.1016/j.rser.2018.09.027</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage

  • Original language description

    The world trade volume of Liquefied Natural Gas (LNG) is increasing year by year. Unlike gaseous natural gas (NG), which is transported through a fixed network of pipelines, LNG offers more flexibility to both the exporters and the importers as it can be transported between any pair of exporting and receiving LNG terminals. The LNG process, consisting of liquefaction, transportation, storage, and regasification of LNG, is accompanied by certain energy demands. The paper focuses on the evaluation of the chain of energy transformations involved in the LNG process. Based on the review of existing information, the entire process is evaluated from the view of the potential use of LNG for direct storage of cold and indirect storage of power. The analysis of the existing data shows that the overall efficiency of using LNG for operative energy storage depends very much on the technologies involved and on the overall capacity of the particular technology. The combination of energy-efficient liquefaction technologies and regasification technologies with energy recovery makes it possible to employ LNG as an energy storage medium even when transported over large distances.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20303 - Thermodynamics

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    RENEWABLE & SUSTAINABLE ENERGY REVIEWS

  • ISSN

    1364-0321

  • e-ISSN

  • Volume of the periodical

    99

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    15

  • Pages from-to

    1-15

  • UT code for WoS article

    000451762300001

  • EID of the result in the Scopus database

    2-s2.0-85053819849