A Dynamic Mesh Method to Model Shape Change during Electrodeposition
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F19%3APU136967" target="_blank" >RIV/00216305:26210/19:PU136967 - isvavai.cz</a>
Result on the web
<a href="http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=4&SID=C25mZ98uTKjrc9414Gd&page=1&doc=1" target="_blank" >http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=4&SID=C25mZ98uTKjrc9414Gd&page=1&doc=1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1149/2.1241912jes" target="_blank" >10.1149/2.1241912jes</a>
Alternative languages
Result language
angličtina
Original language name
A Dynamic Mesh Method to Model Shape Change during Electrodeposition
Original language description
A novel dynamic mesh-based approach is proposed to simulate shape change of the deposit front during electrodeposition. Primary and secondary current distributions are computed. The proposed numerical model is tested on a two dimensional system for which analytical solutions was previously presented by Subramanian andWhite [J. Electrochem. Soc., 2002, C498-C505]. Firstly, calculations are carried out only in the electrolyte where the deposit front is considered to be the boundary of the computational domain. Secondly, a fully coupled simulation is carried out, and field structures such as electric potential and electric current density are computed both in the electrolyte and deposit. It is found that the deposit region must be included in calculations of primary current distribution as the magnitude of electric potential is inevitably non-zero at the deposit front during electrodeposition. However, the deposit front can be accurately tracked considering secondary current distribution with or without involving the deposit region in our calculations. All transient results are shown through animations in the supplemental materials. (c) 2019 The Electrochemical Society.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
JOURNAL OF THE ELECTROCHEMICAL SOCIETY
ISSN
0013-4651
e-ISSN
1945-7111
Volume of the periodical
166
Issue of the periodical within the volume
12
Country of publishing house
US - UNITED STATES
Number of pages
9
Pages from-to
„D521“-„D529“
UT code for WoS article
000478039000001
EID of the result in the Scopus database
2-s2.0-85073589011