A note on transformations of independent variable in second order dynamic equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F20%3APU135402" target="_blank" >RIV/00216305:26210/20:PU135402 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-3-030-35502-9_15" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-35502-9_15</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-35502-9_15" target="_blank" >10.1007/978-3-030-35502-9_15</a>
Alternative languages
Result language
angličtina
Original language name
A note on transformations of independent variable in second order dynamic equations
Original language description
The main purpose of this paper is to show how a transformation of independent variable in dynamic equations combined with suitable statements on a general time scale can yield new results or new proofs to known results. It seems that this approach has not been extensively used in the literature devoted to dynamic equations. We present, in particular, two types of applications. In the first one, an original dynamic equation is transformed into a simpler equation. In the second one, a dynamic equation in a somehow critical setting is transformed into a noncritical case. These ideas will be demonstrated on problems from oscillation theory and asymptotic theory of second order linear and nonlinear dynamic equations.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA17-03224S" target="_blank" >GA17-03224S: Asymptotic theory of ordinary and fractional differential equations and their numerical discretizations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Springer Proceedings in Mathematics & Statistics
ISBN
978-3-030-35502-9
ISSN
—
e-ISSN
—
Number of pages
19
Pages from-to
335-353
Publisher name
Springer
Place of publication
Cham
Event location
Dresden
Event date
May 21, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000659332700015