All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

An overview of mercury emissions in the energy industry - A step to mercury footprint assessment

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F20%3APU136693" target="_blank" >RIV/00216305:26210/20:PU136693 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.jclepro.2020.122087" target="_blank" >https://doi.org/10.1016/j.jclepro.2020.122087</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jclepro.2020.122087" target="_blank" >10.1016/j.jclepro.2020.122087</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    An overview of mercury emissions in the energy industry - A step to mercury footprint assessment

  • Original language description

    The energy industry is currently the second largest anthropogenic source of mercury pollution worldwide, and in many countries, it is by far the largest anthropogenic source of mercury emissions. Mercury emissions can be traced to almost the entire energy industry value chain. Combustion of coal is the primary source of mercury emissions in energy production. Biomass, which is considered a renewable fuel, is also a source of atmospheric mercury emissions. A general trend from landfill waste disposal to waste incineration can be observed in many countries, but waste-to-energy incineration is also a source of mercury emissions. The increased mercury levels have been recorded in fish living in the reservoirs for hydroelectricity. The adverse effects of mercury exposure on human health have been indicated in a number of studies, and there seems to be no ‘zero effect’ exposure level. As a result, the mitigation of mercury emissions is gaining more and more attention. The overview creates the base for further research for quantification of the effect of mercury emissions on the environment and on human health, which can be expressed and quantified by Mercury Footprints.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20301 - Mechanical engineering

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Cleaner Production

  • ISSN

    0959-6526

  • e-ISSN

    1879-1786

  • Volume of the periodical

    267

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    11

  • Pages from-to

    1-11

  • UT code for WoS article

    000542425300012

  • EID of the result in the Scopus database

    2-s2.0-85085750343