All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Air pollution prediction using semi-experimental regression model and Adaptive Neuro-Fuzzy Inference System

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F20%3APU137312" target="_blank" >RIV/00216305:26210/20:PU137312 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0959652620312658?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0959652620312658?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jclepro.2020.121218" target="_blank" >10.1016/j.jclepro.2020.121218</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Air pollution prediction using semi-experimental regression model and Adaptive Neuro-Fuzzy Inference System

  • Original language description

    Lifestyle development and increasing urbanisation and consumption of fossil fuels, monitoring and controlling air pollution have become more important. This study has used the available data of key pollutants to predict their future status through time-series modelling. Most researchers have employed Autoregressive Integrated Moving Average and Logistic Regression techniques, and Adaptive Neuro-Fuzzy Inference System has rarely been used to analyse time-series data. Traditional time-series forecasting models assume a linear relationship between variables, while there are nonlinear and complex components in air pollution modelling. This study aimed to respond to this limitation by improving the accuracy of the daily prediction of pollutants via time-series data analysis by using Adaptive Neuro-Fuzzy Inference System modelling. A nonlinear multivariate regression model was developed and experimentally refined to obtain the least error possible. Data on pollutants containing CO, SO2, O-3, and NO2 are collected from a single monitoring point in Tehran. The process of the developing the model begins by breaking down the data sets into training, testing, and validation set at a random ratio of 80%, 10%, and 10%. For the prediction of CO, SO2, O-3, and NO2, the coefficients of determination are calculated as 0.8686, 0.8011, 0.8350 and 0.7640, and these values for the semi-experimental model were 0.8445, 0.8001, 0.7830 and 0.7602. According to the performance indicators of both models, Adaptive Neuro-Fuzzy Inference System is more accurate in predicting time-series data than regression models. Reliable forecasting of future air quality would help governments develop policies and regulations to protect humans and ecosystems and achieve sustainable development. (C) 2020 Elsevier Ltd. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20701 - Environmental and geological engineering, geotechnics

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Cleaner Production

  • ISSN

    0959-6526

  • e-ISSN

    1879-1786

  • Volume of the periodical

    neuveden

  • Issue of the periodical within the volume

    261

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    16

  • Pages from-to

    121218-121218

  • UT code for WoS article

    000533538800002

  • EID of the result in the Scopus database

    2-s2.0-85082700905