On dynamical systems with nabla half derivative on time scales
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F20%3APU137800" target="_blank" >RIV/00216305:26210/20:PU137800 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s00009-020-01629-w" target="_blank" >https://link.springer.com/article/10.1007/s00009-020-01629-w</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00009-020-01629-w" target="_blank" >10.1007/s00009-020-01629-w</a>
Alternative languages
Result language
angličtina
Original language name
On dynamical systems with nabla half derivative on time scales
Original language description
This paper is devoted to study of dynamical systems involving nabla half derivative on an arbitrary time scale. We prove existence and uniqueness of the solution of such system supplied with a suitable initial condition. Both Riemann–Liouville and Caputo approaches to noninteger-order derivatives are covered. Under special conditions we present an explicit form of the solution involving a time scales analogue of Mittag–Leffler function. Also an algorithm for solving of such problems on isolated time scales is established. Moreover, we show that half power functions are positive and decreasing with respect to t−s on an arbitrary time scale.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mediterranean Journal of Mathematics
ISSN
1660-5446
e-ISSN
1660-5454
Volume of the periodical
17
Issue of the periodical within the volume
187
Country of publishing house
CH - SWITZERLAND
Number of pages
19
Pages from-to
1-19
UT code for WoS article
000586688100001
EID of the result in the Scopus database
2-s2.0-85093969294