Quantum computing based on quantum bit algebra QGA
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F20%3APU140172" target="_blank" >RIV/00216305:26210/20:PU140172 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-030-70740-8_7" target="_blank" >http://dx.doi.org/10.1007/978-3-030-70740-8_7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-70740-8_7" target="_blank" >10.1007/978-3-030-70740-8_7</a>
Alternative languages
Result language
angličtina
Original language name
Quantum computing based on quantum bit algebra QGA
Original language description
We describe quantum bit algebra (QBA) as an algebra for quantum formalism. We represent the qubits as vectors in QBA and the gates as conjugations. We describe the algebra of their infinitesimal isomorphisms and discuss their relations to orthogonal Lie algebra so(n). We show that QBA can be seen as a model of a hyperbolic quantum computing instead of the classical one.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Modelling and Simulation for Autonomous Systems
ISBN
978-3-030-70739-2
ISSN
—
e-ISSN
—
Number of pages
12
Pages from-to
3-14
Publisher name
Springer
Place of publication
neuveden
Event location
Prague
Event date
Oct 21, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—