Fleischer po-semigroups and quantum B-algebras
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73603749" target="_blank" >RIV/61989592:15310/20:73603749 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14310/20:00117602
Result on the web
<a href="https://obd.upol.cz/id_publ/333183635" target="_blank" >https://obd.upol.cz/id_publ/333183635</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ISMVL49045.2020.00060" target="_blank" >10.1109/ISMVL49045.2020.00060</a>
Alternative languages
Result language
angličtina
Original language name
Fleischer po-semigroups and quantum B-algebras
Original language description
Following the idea of Fleischer who represented BCK-algebras by means of residuable elements of commutative integral po-monoids, we describe quantum B-algebras as subsets of residuable elements of posemigroups. Moreover, we show that quantum B-algebras correspond one-to-one to what we call Fleischer posemigroups. Such an approach is more economical than using logical quantales introduced by Rump.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2020 IEEE 50th International Symposium on Multiple-Valued Logic (ISMVL)
ISBN
978-1-72815-406-0
ISSN
2378-2226
e-ISSN
2378-2226
Number of pages
6
Pages from-to
285-290
Publisher name
IEEE Computer Society Press
Place of publication
New York
Event location
Miyazaki, Japan
Event date
Nov 9, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—