Discrete Riccati matrix equation and the order preserving property
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F21%3APU139253" target="_blank" >RIV/00216305:26210/21:PU139253 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0024379521000409" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0024379521000409</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.laa.2021.01.021" target="_blank" >10.1016/j.laa.2021.01.021</a>
Alternative languages
Result language
angličtina
Original language name
Discrete Riccati matrix equation and the order preserving property
Original language description
It is known that if a symmetric matrix differential equation has the order preserving property and the matrix dimension is at least 2, then this equation is the Riccati matrix differential equation (see A.N. Stokes, A special property of the matrix Riccati equation, Bull. Austral. Math. Soc., 1974). In this paper we prove that a similar statement holds for discrete matrix equations as well. In the proof we use a new approach, in which we extend a discrete function to a continuous one by using the iteration theory and then apply the known result for the continuous case.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
LINEAR ALGEBRA AND ITS APPLICATIONS
ISSN
0024-3795
e-ISSN
1873-1856
Volume of the periodical
618
Issue of the periodical within the volume
6
Country of publishing house
US - UNITED STATES
Number of pages
18
Pages from-to
58-75
UT code for WoS article
000630009900005
EID of the result in the Scopus database
2-s2.0-85100680655