All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Synthesis of biodiesel from non-edible (Brachychiton populneus) oil in the presence of nickel oxide nanocatalyst: Parametric and optimisation studies

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F21%3APU140627" target="_blank" >RIV/00216305:26210/21:PU140627 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/abs/pii/S0045653521009395?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0045653521009395?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.chemosphere.2021.130469" target="_blank" >10.1016/j.chemosphere.2021.130469</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Synthesis of biodiesel from non-edible (Brachychiton populneus) oil in the presence of nickel oxide nanocatalyst: Parametric and optimisation studies

  • Original language description

    The present study defines a novel green method for the synthesis of the nickel oxide nanocatalyst by using an aqueous latex extract of the Ficus elastic. The catalyst was examined for the conversion of novel Brachychiton populneus seed oil (BPSO) into biodiesel. The Brachychiton populneus seeds have a higher oil content (41 wt%) and free fatty acid value (3.8 mg KOH/g). The synthesised green nanocatalyst was examined by the Fourier transform infrared (FT-IR) spectroscopy, energy dispersive X-Ray (EDX) spectroscopy, X-Ray diffraction (XRD) spectroscopy and scanning electron microscopy (SEM). The obtained results show that the synthesised green nanocatalyst was 22–26 nm in diameter and spherical-cubic in shape with a higher rate of catalytic efficiency. It was utilised further for the conversion of BPSO into biofuel. Due to the high free fatty acid value, the biodiesel was synthesised by the two-step process, i.e., pretreatment of the BPSO by means of acid esterification and then followed by the transesterification reaction. The acidic catalyst (H2SO4) was used for the pretreatment of BPSO. The optimum condition for the transesterification of the pretreated BPSO was 1:9 of oil-methanol molar ratio, 2.5 wt % of prepared nanocatalyst concentration and 85 °C of reaction temperature corresponding to the highest biodiesel yield of 97.5 wt%. The synthesised biodiesel was analysed by the FT-IR and GC-MS technique to determine the chemical composition of fatty acid methyl esters. Fuel properties of Brachychiton populneus seed oil biodiesel (BPSOB) were also examined, compared, and it falls in the prescribed range of ASTM standards. © 2021 Elsevier Ltd

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20704 - Energy and fuels

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    CHEMOSPHERE

  • ISSN

    0045-6535

  • e-ISSN

    1879-1298

  • Volume of the periodical

    neuveden

  • Issue of the periodical within the volume

    278

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    13

  • Pages from-to

    130469-130469

  • UT code for WoS article

    000659471700122

  • EID of the result in the Scopus database

    2-s2.0-85103752571