All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Conversion of the toxic and hazardous Zanthoxylum armatum seed oil into methyl ester using green and recyclable silver oxide nanoparticles

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU142102" target="_blank" >RIV/00216305:26210/22:PU142102 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0016236121021700" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0016236121021700</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.fuel.2021.122296" target="_blank" >10.1016/j.fuel.2021.122296</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Conversion of the toxic and hazardous Zanthoxylum armatum seed oil into methyl ester using green and recyclable silver oxide nanoparticles

  • Original language description

    The cleaner and sustainable production of biodiesel from toxic and hazardous non-edible seed oils offer a remarkable opportunity to deal with energy crises and provide a renewable substitute to depleting fossil fuels. In the current study, the potential of the novel, toxic and non-edible seed oil of Zanthoxylum armatum was investigated for eco-friendly production of biodiesel catalysed by green nanoparticles of silver oxide. Silver oxide nanoparticles were synthesised with aqueous leaf extract of Silybum marianum. Heterogeneous green nanocatalysts were preferred due to their recyclable nature and easy recovery. The maximum yield of 95% of methyl ester was obtained at optimum reaction conditions of oil to methanol molar ratio 1:7, catalyst loading 0.5 (wt.%), reaction temperature 90 degrees C and reaction time 2 h. Characterisation of synthesised nanoparticles of silver oxide was carried out with X-Ray diffraction (XRD), scanning electron microscopy (SEM), and energy diffraction X-ray (EDX). Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR) confirmed the formation of methyl esters. 5, 8-octadecenoic acid was found to be the major fatty acid methyl ester in the biodiesel sample. Fuel properties of biodiesel were investigated and found comparable to international standards of ASTM D-6571 and EN-14214. It was concluded from the current investigation that Zanthoxylum armatum is a potential biomass feedstock for the sustainable production of biodiesel using green nanoparticles of silver oxide.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20704 - Energy and fuels

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    FUEL

  • ISSN

    0016-2361

  • e-ISSN

    1873-7153

  • Volume of the periodical

    neuveden

  • Issue of the periodical within the volume

    310

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    15

  • Pages from-to

    122296-122296

  • UT code for WoS article

    000717771700004

  • EID of the result in the Scopus database

    2-s2.0-85118474775