A New Formulation of Maxwell’s Equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F21%3APU140838" target="_blank" >RIV/00216305:26210/21:PU140838 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/2073-8994/13/5/868" target="_blank" >https://www.mdpi.com/2073-8994/13/5/868</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/sym13050868" target="_blank" >10.3390/sym13050868</a>
Alternative languages
Result language
angličtina
Original language name
A New Formulation of Maxwell’s Equations
Original language description
In this paper, new forms of Maxwell’s equations in vector and scalar variants are presented. The new forms are based on the use of Gauss’s theorem for magnetic induction and electrical induction. The equations are formulated in both differential and integral forms. In particular, the new forms of the equations relate to the non-stationary expressions and their integral identities. The indicated methodology enables a thorough analysis of non-stationary boundary conditions on the behavior of electromagnetic fields in multiple continuous regions. It can be used both for qualitative analysis and in numerical methods (control volume method) and optimization. The last Section introduces an application to equations of magnetic fluid in both differential and integral forms.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20302 - Applied mechanics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Symmetry
ISSN
2073-8994
e-ISSN
—
Volume of the periodical
13
Issue of the periodical within the volume
5
Country of publishing house
CH - SWITZERLAND
Number of pages
12
Pages from-to
868-868
UT code for WoS article
000654705500001
EID of the result in the Scopus database
2-s2.0-85106561718