All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Cartesian closedness in categories with an idempotent closure operator and closed morphisms

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F21%3APU140954" target="_blank" >RIV/00216305:26210/21:PU140954 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/article/10.1007/s00010-020-00772-9" target="_blank" >https://link.springer.com/article/10.1007/s00010-020-00772-9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00010-020-00772-9" target="_blank" >10.1007/s00010-020-00772-9</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Cartesian closedness in categories with an idempotent closure operator and closed morphisms

  • Original language description

    Given a subobject-structured category X, we construct a new category whose objects are the pairs (X, c) where X is an X- object and c is an idempotent, monotonic and extensive endomap of the subobject lattice of X, and whose morphisms between objects are the closed maps between the corresponding subobject lattices. We give a sufficient condition on X for the new category to be cartesian closed.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    AEQUATIONES MATHEMATICAE

  • ISSN

    0001-9054

  • e-ISSN

    1420-8903

  • Volume of the periodical

    2021

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    7

  • Pages from-to

    115-121

  • UT code for WoS article

    000613589200001

  • EID of the result in the Scopus database

    2-s2.0-85100178020