Cartesian closedness in categories with an idempotent closure operator and closed morphisms
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU140954" target="_blank" >RIV/00216305:26210/22:PU140954 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s00010-020-00772-9" target="_blank" >https://link.springer.com/article/10.1007/s00010-020-00772-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00010-020-00772-9" target="_blank" >10.1007/s00010-020-00772-9</a>
Alternative languages
Result language
angličtina
Original language name
Cartesian closedness in categories with an idempotent closure operator and closed morphisms
Original language description
Given a subobject-structured category X, we construct a new category whose objects are the pairs (X, c) where X is an X- object and c is an idempotent, monotonic and extensive endomap of the subobject lattice of X, and whose morphisms between objects are the closed maps between the corresponding subobject lattices. We give a sufficient condition on X for the new category to be cartesian closed.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
AEQUATIONES MATHEMATICAE
ISSN
0001-9054
e-ISSN
1420-8903
Volume of the periodical
96
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
8
Pages from-to
129-136
UT code for WoS article
000613589200001
EID of the result in the Scopus database
2-s2.0-85100178020