All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Biomass integration for energy recovery and efficient use of resources: Tomsk Region

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F21%3APU141256" target="_blank" >RIV/00216305:26210/21:PU141256 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/abs/pii/S0360544221016261?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0360544221016261?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.energy.2021.121378" target="_blank" >10.1016/j.energy.2021.121378</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Biomass integration for energy recovery and efficient use of resources: Tomsk Region

  • Original language description

    Resource recovery has an essential role in achieving sustainable development. This study aims to minimise the environmental footprint of biomass integration for energy recovery, where a wide range of biomass, including manure, residual and forest wood, are considered. The assessed case study is the Tomsk region in the Russian Federation, focusing on GHG (Greenhouse Gas) footprints (CO2, CH4, N2O). The adapted clustering-based method suggested that biomass integration, consisting of 16 districts, can be divided into three major clusters. The clusters could facilitate further resource planning, considering the land-use footprint of different energy generation. This study identified biomass integration design with minimum GHG footprint (origin of biomass and transportation) of - 217 kt CO2eq/y mainly contributed by the avoided methane from manure. Scenario 1, where the energy demand (3,723 TJ/y) is solely fulfilled by forest wood, contributes to 85.73 kt CO2eq/y. By limiting waste biomass (manure and residual) for local utilisation only (without integration), 60% higher GHG emission (- 90.2 kt CO2eq/y) is identified compared to the identified solution with a minimum GHG footprint. The environmental sustainability of bioenergy is highly dependent on the type of biomass, transporting activities, and heating value. It is crucial to evaluate case by case situation in substituting fossil-based energy or other renewable energy. © 2021 Elsevier Ltd

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20704 - Energy and fuels

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Energy

  • ISSN

    0360-5442

  • e-ISSN

    1873-6785

  • Volume of the periodical

    neuveden

  • Issue of the periodical within the volume

    235

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    13

  • Pages from-to

    121378-121378

  • UT code for WoS article

    000703195800003

  • EID of the result in the Scopus database

    2-s2.0-85109439187