All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Optimisation of Renewable-Based Multi-Energy System with Hydrogen Energy for Urban-Industrial Symbiosis

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F21%3APU143083" target="_blank" >RIV/00216305:26210/21:PU143083 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.cetjournal.it/cet/21/88/033.pdf" target="_blank" >http://www.cetjournal.it/cet/21/88/033.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3303/CET2188033" target="_blank" >10.3303/CET2188033</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Optimisation of Renewable-Based Multi-Energy System with Hydrogen Energy for Urban-Industrial Symbiosis

  • Original language description

    Hydrogen energy technologies have attracted substantial attention due to carbon-free and environmental friendly. However, not much attention is paid to the application of hydrogen in tri- and polygeneration system. Hence, a renewable-based multi-energy system (RMES) is proposed to combine four separate systems: cooling, heating, hydrogen, and power. Renewable solar energy is supplied to the system utilising a photovoltaic solar panel for the electrical supply and a solar thermal collector for the heating supply. Thermal and electrical energy storage is utilised to mitigate the fluctuations in the energy consumption and peak shaving characteristics of the multi-energy system. The hydrogen sub-system consists of solid oxide fuel cell, solid oxide electrolyser cell and hydrogen energy storage. A comparative analysis is performed to study the effect of different energy storage on each objective function. A multi-objective optimisation approach was proposed to evaluate trade-offs between two different objective functions: economic and environment. A well-known decision-making approach ℇ-constraint method has been applied to identify the final desired Pareto optimal solution for the model to be more suitable in reality. This result will contribute to the global goal on energy (SDG 7) to strive towards affordable and clean energy to significantly increase the share of renewable energy in the global energy mix. © 2021, AIDIC Servizi S.r.l.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    20704 - Energy and fuels

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Chemical Engineering Transactions

  • ISSN

    2283-9216

  • e-ISSN

  • Volume of the periodical

    neuveden

  • Issue of the periodical within the volume

    88

  • Country of publishing house

    IT - ITALY

  • Number of pages

    6

  • Pages from-to

    199-204

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85122580202