All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Multi-period multi-objective optimisation model for multi-energy urban-industrial symbiosis with heat, cooling, power and hydrogen demands

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F23%3APU145626" target="_blank" >RIV/00216305:26210/23:PU145626 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0360544222020916" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0360544222020916</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.energy.2022.125201" target="_blank" >10.1016/j.energy.2022.125201</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Multi-period multi-objective optimisation model for multi-energy urban-industrial symbiosis with heat, cooling, power and hydrogen demands

  • Original language description

    Hydrogen is seen as the future energy that will help decarbonise the emissions of global energy use. Hydrogen-related technologies have recently attracted considerable attention due to their relatively low emissions and high energy yield. Even then, little attention was given to hydrogen's use in energy distribution networks. A renewable-based multi-energy system (RMES) considers power, cooling, heating, and hydrogen energy as utility systems for integrated urban and industrial areas to achieve urban-industrial symbiosis. This paper formulates the RMES as a multi-period mixed-integer nonlinear programming (MINLP) model to optimise the RMES, which minimises the financial implications and environmental impacts. Renewable solar energy is provided to the system using the photovoltaic solar system for electrical generation and the solar thermal collector for heat generation. Thermal, battery and hydrogen energy storages are integrated into the RMES to mitigate the energy supply and demand fluctuations and intermittency. A comparative analysis is conducted to individually identify the performance of different energy storage systems for economic and environmental objective functions. The comparison findings indicate that ESS performs better with 45% usage increases under objective environmental functions. The multi-objective optimisation using the ϵ-constraint method obtains the Pareto optimal solutions to the proposed multi-objective problem, which the 4th solution (ATC: 782,500 USD/y; ACE: 2,777.03 kg CO2-eq/y) appears to be the most viable. The solution maintains a high-profit level without sacrificing many opportunities for carbon emissions reduction while satisfying both objective functions simultaneously to a degree of satisfaction of 0.75. Overall, the proposed RMES is proven economical and environmentally friendly for implementation; however, the model is needed to optimise the system based on the specific situation. This study provides the optimisation model for e

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20704 - Energy and fuels

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Energy

  • ISSN

    0360-5442

  • e-ISSN

    1873-6785

  • Volume of the periodical

    neuveden

  • Issue of the periodical within the volume

    262

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    14

  • Pages from-to

    „“-„“

  • UT code for WoS article

    000861153300001

  • EID of the result in the Scopus database

    2-s2.0-85138081249