All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Energy and environmental sustainability of waste personal protective equipment (PPE) treatment under COVID-19

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU142271" target="_blank" >RIV/00216305:26210/22:PU142271 - isvavai.cz</a>

  • Result on the web

    <a href="https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S1364032121010558" target="_blank" >https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S1364032121010558</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.rser.2021.111786" target="_blank" >10.1016/j.rser.2021.111786</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Energy and environmental sustainability of waste personal protective equipment (PPE) treatment under COVID-19

  • Original language description

    Combating the COVID-19 pandemic has raised the demand for and disposal of personal protective equipment in the United States. This work proposes a novel waste personal protective equipment processing system that enables energy recovery through producing renewable fuels and other basic chemicals. Exergy analysis and environmental assessment through a detailed life cycle assessment approach are performed to evaluate the energy and environmental sustainability of the processing system. Given the environmental advantages in reducing 35.42% of total greenhouse gas emissions from the conventional incineration and 43.50% of total fossil fuel use from landfilling processes, the optimal number, sizes, and locations of establishing facilities within the proposed personal protective equipment processing system in New York State are then determined by an optimization based site selection methodology, proposing to build two pre-processing facilities in New York County and Suffolk County and one integrated fast pyrolysis plant in Rockland County. Their optimal annual treatment capacities are 1,708 t/y, 8,000 t/y, and 9,028 t/y. The proposed optimal personal protective equipment processing system reduces 31.5% of total fossil fuel use and 35.04% of total greenhouse gas emissions compared to the personal protective equipment incineration process. It also avoids 41.52% and 47.64% of total natural land occupation from the personal protective equipment landfilling and incineration processes.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20704 - Energy and fuels

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    RENEWABLE & SUSTAINABLE ENERGY REVIEWS

  • ISSN

    1364-0321

  • e-ISSN

  • Volume of the periodical

    neuveden

  • Issue of the periodical within the volume

    153

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    15

  • Pages from-to

    111786-111786

  • UT code for WoS article

    000714449100001

  • EID of the result in the Scopus database

    2-s2.0-85118731468