All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Hydrogen in Automotive: LCA Study

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00376261" target="_blank" >RIV/68407700:21230/24:00376261 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/ISSE61612.2024.10603647" target="_blank" >https://doi.org/10.1109/ISSE61612.2024.10603647</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ISSE61612.2024.10603647" target="_blank" >10.1109/ISSE61612.2024.10603647</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Hydrogen in Automotive: LCA Study

  • Original language description

    This study presents a comprehensive cradle-to-gate Life Cycle Assessment of fuel cell electric vehicles (FCEVs), providing a comparative assessment against alternative and fossil fuel-driven counterparts. The research focuses on hydrogen as a fuel source, emphasizing two key production methods: natural gas reforming and water electrolysis. The scope of the study is set to the Czech Republic environment. Diverse sources of electric generation, such as wind and photovoltaics, are considered to supply the electrolysis process. The energy source mix predictions are set to year 2030 up to 2050. The feasibility of transitioning towards greater utilization of renewable energy sources within the context of privately owned vehicles is investigated in this work. Specifically, the study examines the exact part of the vehicle life cycle, starting with production to the use phase, with a consideration of the car’s lifetime, aiming to provide a nuanced understanding of their environmental footprint and clear comparability with each other. This study highlights the significant potential for reducing the environmental impacts of personal vehicles through the usage of hydrogen. With FCEVs emitting zero direct emissions, the total environmental impact is directly tied to the process of fuel production. Producing hydrogen through electrolysis, particularly when powered by photovoltaic or wind energy can significantly lower its emissions, especially in terms of greenhouse gas emissions.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20704 - Energy and fuels

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2024 47th International Spring Seminar on Electronics Technology (ISSE)

  • ISBN

    979-8-3503-8548-9

  • ISSN

    2161-2536

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

  • Publisher name

    IEEE Press

  • Place of publication

    New York

  • Event location

    Praha

  • Event date

    May 15, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001283808200018