All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Salt hydrate–based gas-solid thermochemical energy storage: Current progress, challenges, and perspectives

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU142874" target="_blank" >RIV/00216305:26210/22:PU142874 - isvavai.cz</a>

  • Result on the web

    <a href="https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S1364032121011138" target="_blank" >https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S1364032121011138</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.rser.2021.111846" target="_blank" >10.1016/j.rser.2021.111846</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Salt hydrate–based gas-solid thermochemical energy storage: Current progress, challenges, and perspectives

  • Original language description

    Due to the prominent advantages of high energy density and long-term energy conservation ability, salt hydrate based gas-solid thermochemical energy storage (TCES) is a promising technology for effectively employing lowgrade energy such as industrial waste heat and minimising fossil fuel-based sources depletion. As an innovative thermal energy storage technology that has drawn great attention from scholars in recent years, it still remains in the stage of a laboratory-scale investigation. This study establishes a reasonable classification of salt hydrates based TCES systems, discusses the properties and performance regulation strategies of materials, types of reactors, applications, heat and mass transfer process, reaction mechanisms, and also provides critical comments and outlooks on this adsorption TCES technology. It is comprehensively elaborated and evaluated in the following steps. (i) The development of various thermochemical materials (TCMs), including pure salts, mixtures of salt hydrates, and composite TCMs of salt/matrix, is summarised and assessed in detail from the perspectives of thermochemical performances such as ESD and cyclability. (ii) The progress of the conceptual design of the reactor and prototype used for vapour/salt gas-solid reaction are presented and analysed. (iii) The existing theoretical models ranging from the views of microcosmic molecular dynamics to macrocosmic reaction kinetics are discussed. (iv) Additionally, the existing challenges regarding salt hydrate-based TCES technology are identified, and the prospects are also provided. This review enables researchers to timely grasp the latest advancements and thus may provide some rewarding insights for future investigations of salt hydrate-based gas-solid TCES and facilitate scholars to achieve better improvements.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20704 - Energy and fuels

Result continuities

  • Project

    <a href="/en/project/LTACH19033" target="_blank" >LTACH19033: Transmission Enhancement and Energy Optimized Integration of Heat Exchangers in Petrochemical Industry Waste Heat Utilisation</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    RENEWABLE & SUSTAINABLE ENERGY REVIEWS

  • ISSN

    1364-0321

  • e-ISSN

  • Volume of the periodical

    neuveden

  • Issue of the periodical within the volume

    154

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    32

  • Pages from-to

    111846-111846

  • UT code for WoS article

    000720754500002

  • EID of the result in the Scopus database

    2-s2.0-85121003922