On stability of linear differential equations with commensurate delayed arguments
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU143530" target="_blank" >RIV/00216305:26210/22:PU143530 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S089396592100402X" target="_blank" >https://www.sciencedirect.com/science/article/pii/S089396592100402X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aml.2021.107750" target="_blank" >10.1016/j.aml.2021.107750</a>
Alternative languages
Result language
angličtina
Original language name
On stability of linear differential equations with commensurate delayed arguments
Original language description
The paper studies a class of linear differential equations with several delayed arguments formed by iterates of a given function. The main result of this paper improves the existing stability criteria and formulates an effective necessary and sufficient condition relating stability of the studied differential equations to stability of some auxiliary difference equations. In the case of a two-delay equation, this condition is presented explicitly in terms of the equation’s parameters. As an accompanying result, the asymptotic decay rate of the solutions is described as well.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA20-11846S" target="_blank" >GA20-11846S: Differential and difference equations of real orders: Qualitative analysis and its applications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
APPLIED MATHEMATICS LETTERS
ISSN
0893-9659
e-ISSN
—
Volume of the periodical
125
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
8
Pages from-to
1-8
UT code for WoS article
000720455200011
EID of the result in the Scopus database
2-s2.0-85118547699