All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Greener production of cellulose nanocrystals: An optimised design and life cycle assessment

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU143937" target="_blank" >RIV/00216305:26210/22:PU143937 - isvavai.cz</a>

  • Result on the web

    <a href="https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0959652622007065" target="_blank" >https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0959652622007065</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jclepro.2022.131073" target="_blank" >10.1016/j.jclepro.2022.131073</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Greener production of cellulose nanocrystals: An optimised design and life cycle assessment

  • Original language description

    Cellulose nanocrystals (CNCs) are usually prepared by sulphuric acid hydrolysis in industrial production, resulting in a large amount of alkaline and water consumption. In this paper, three acid-CNCs separation methods, including gravity settling, centrifugation and microfiltration, are used to directly separate sulphuric acid from hydrolysate mixture to reduce alkaline and water consumption. Microfiltration was selected as the best method for acid-CNCs separation. Using microfiltration, the highest sulphuric acid recovery ratio was about 65.0%, with an acid concentration range of 8–10 wt% in the pilot-scale CNCs production. Continuous centrifugation was introduced to replace gravity settling to separate CNCs from the neutralised mixture for faster production and reducing water consumption. The consumption of alkaline and water decreased by 63.0% and 68.0%, and the cost was reduced by 26%. The result of life cycle assessment (LCA) showed that the process with acid-CNCs separation using microfiltration achieved a reduction of 33.4% in aquatic ecotoxicity, 38.1% in terrestrial ecotoxicity, 47.9% in aquatic acidification, 55.8% in aquatic eutrophication, 40.0% in global warming potential and 47.8% in non-renewable energy consumptions. This study provided a promising approach for separating sulphuric acid from hydrolysate mixture and reducing consumption of alkaline and water. Such clean and economic process has great potential in the industrial production of CNCs.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20704 - Energy and fuels

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Cleaner Production

  • ISSN

    0959-6526

  • e-ISSN

    1879-1786

  • Volume of the periodical

    neuveden

  • Issue of the periodical within the volume

    345

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    13

  • Pages from-to

    131073-131073

  • UT code for WoS article

    000789632400002

  • EID of the result in the Scopus database

    2-s2.0-85125434434