Greener production of cellulose nanocrystals: An optimised design and life cycle assessment
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU143937" target="_blank" >RIV/00216305:26210/22:PU143937 - isvavai.cz</a>
Result on the web
<a href="https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0959652622007065" target="_blank" >https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0959652622007065</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jclepro.2022.131073" target="_blank" >10.1016/j.jclepro.2022.131073</a>
Alternative languages
Result language
angličtina
Original language name
Greener production of cellulose nanocrystals: An optimised design and life cycle assessment
Original language description
Cellulose nanocrystals (CNCs) are usually prepared by sulphuric acid hydrolysis in industrial production, resulting in a large amount of alkaline and water consumption. In this paper, three acid-CNCs separation methods, including gravity settling, centrifugation and microfiltration, are used to directly separate sulphuric acid from hydrolysate mixture to reduce alkaline and water consumption. Microfiltration was selected as the best method for acid-CNCs separation. Using microfiltration, the highest sulphuric acid recovery ratio was about 65.0%, with an acid concentration range of 8–10 wt% in the pilot-scale CNCs production. Continuous centrifugation was introduced to replace gravity settling to separate CNCs from the neutralised mixture for faster production and reducing water consumption. The consumption of alkaline and water decreased by 63.0% and 68.0%, and the cost was reduced by 26%. The result of life cycle assessment (LCA) showed that the process with acid-CNCs separation using microfiltration achieved a reduction of 33.4% in aquatic ecotoxicity, 38.1% in terrestrial ecotoxicity, 47.9% in aquatic acidification, 55.8% in aquatic eutrophication, 40.0% in global warming potential and 47.8% in non-renewable energy consumptions. This study provided a promising approach for separating sulphuric acid from hydrolysate mixture and reducing consumption of alkaline and water. Such clean and economic process has great potential in the industrial production of CNCs.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20704 - Energy and fuels
Result continuities
Project
<a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Cleaner Production
ISSN
0959-6526
e-ISSN
1879-1786
Volume of the periodical
neuveden
Issue of the periodical within the volume
345
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
131073-131073
UT code for WoS article
000789632400002
EID of the result in the Scopus database
2-s2.0-85125434434