All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Co-pyrolysis of lychee and plastic waste as a source of bioenergy through kinetic study and thermodynamic analysis

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU145114" target="_blank" >RIV/00216305:26210/22:PU145114 - isvavai.cz</a>

  • Result on the web

    <a href="https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S036054422201581X" target="_blank" >https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S036054422201581X</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.energy.2022.124678" target="_blank" >10.1016/j.energy.2022.124678</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Co-pyrolysis of lychee and plastic waste as a source of bioenergy through kinetic study and thermodynamic analysis

  • Original language description

    The use of hazardous materials like plastic waste can be improved by adding value to viable biomass candidates. The current study is focused on lychee and plastic waste co-pyrolysis for the production of energy and chemicals. Based on this knowledge of the subject matter sample mixture was pyrolysed at four different heating rates: 10 °C min−1, 20 °C min−1, 30 °C min−1, and 40 °C min−1. To establish the pyrolysis reaction process, the data was subjected to kinetic modelling, which predicted thermodynamic parameters. The co-pyrolysis standard method of lychee and plastic waste demonstrated 83% of thermal degradation was achieved. This result proves that the co-pyrolysis of lychee waste and waste plastics can increase the output of bio-oil, reduce carbon coking, improve profitability and cost competitiveness, make industrial production possible and environmentally friendly. The kinetic parameters, such as average activation energy, pre-exponential factors, enthalpy and Gibbs free energy, were shown to be 64 kJ mol−1 to 71 kJ mol−1, 102 s−1 to 1011 s−1, 58 kJ mol−1 to 65 kJ mol−1 and 299 kJ mol−1 to 308 kJ mol−1. The obtained quantitative synergetic kinetic and thermodynamic attributes of lychee and plastic waste may indicate its potential for bioenergy generation.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20704 - Energy and fuels

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Energy

  • ISSN

    0360-5442

  • e-ISSN

    1873-6785

  • Volume of the periodical

    neuveden

  • Issue of the periodical within the volume

    256

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    8

  • Pages from-to

    124678-124678

  • UT code for WoS article

    000854015200010

  • EID of the result in the Scopus database

    2-s2.0-85133571209