All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Heat exchanger network synthesis considering detailed thermal-hydraulic performance: Methods and perspectives

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU145546" target="_blank" >RIV/00216305:26210/22:PU145546 - isvavai.cz</a>

  • Result on the web

    <a href="https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S1364032122006931" target="_blank" >https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S1364032122006931</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.rser.2022.112810" target="_blank" >10.1016/j.rser.2022.112810</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Heat exchanger network synthesis considering detailed thermal-hydraulic performance: Methods and perspectives

  • Original language description

    Heat exchanger network synthesis is an essential optimisation tool for Process Integration, particularly in energy-intensive industries. Proper design or retrofit of heat exchanger network can enable energy conservation, efficiency improvement, and process debottlenecking. Many earlier pieces of research have focused on the impact of the network structure and process features such as network topology, temperature intervals, continuous/batch processes, and so on. As the major device in heat exchanger networks, heat exchangers research has always been a hot topic. However, the individual heat exchanger research is different from the number of heat exchangers in a network. Various performance aspects of the heat exchangers, e.g., pressure drop, fouling, and thermal performance, could influence the whole network and the passive responses between each heat exchanger. Besides, integrating those aspects of individual heat exchangers into the network synthesis is still an open problem, especially for cases that demand simultaneous optimisations. This work presents a thorough assessment of research into those aspects in heat exchanger networks, as well as the state-of-the-art of current approaches for heat exchanger networks optimisation that take heat exchanger performance into account. The essential coupling among fouling, pressure drop and thermal design is explored, and the nexus between them and the heat exchanger network is analysed. Researchers will benefit from this overview of heat exchanger network synthesis retrofitting methods and applications.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    20704 - Energy and fuels

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    RENEWABLE & SUSTAINABLE ENERGY REVIEWS

  • ISSN

    1364-0321

  • e-ISSN

  • Volume of the periodical

    neuveden

  • Issue of the periodical within the volume

    168

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    19

  • Pages from-to

    112810-112810

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85135818400