Next-generation graphene oxide additives composite membranes for emerging organic micropollutants removal: Separation, adsorption and degradation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU146076" target="_blank" >RIV/00216305:26210/22:PU146076 - isvavai.cz</a>
Result on the web
<a href="https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0045653522028260" target="_blank" >https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0045653522028260</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.chemosphere.2022.136333" target="_blank" >10.1016/j.chemosphere.2022.136333</a>
Alternative languages
Result language
angličtina
Original language name
Next-generation graphene oxide additives composite membranes for emerging organic micropollutants removal: Separation, adsorption and degradation
Original language description
In the past two decades, membrane technology has attracted considerable interest as a viable and promising method for water purification. Emerging organic micropollutants (EOMPs) in wastewater have trace, persistent, highly variable quantities and types, develop hazardous intermediates and are diffusible. These primary issues affect EOMPs polluted wastewater on an industrial scale differently than in a lab, challenging membranes-based EOMP removal. Graphene oxide (GO) promises state-of-the-art membrane synthesis technologies and use in EOMPs removal systems due to its superior physicochemical, mechanical, and electrical qualities and high oxygen content. This critical review highlights the recent advancements in the synthesis of next-generation GO membranes with diverse membrane substrates such as ceramic, polyethersulfone (PES), and polyvinylidene fluoride (PVDF). The EOMPs removal efficiencies of GO membranes in filtration, adsorption (incorporated with metal, nanomaterial in biodegradable polymer and biomimetic membranes), and degradation (in catalytic, photo-Fenton, photocatalytic and electrocatalytic membranes) and corresponding removal mechanisms of different EOMPs are also depicted. GO-assisted water treatment strategies were further assessed by various influencing factors, including applied water flow mode and membrane properties (e.g., permeability, hydrophily, mechanical stability, and fouling). GO additive membranes showed better permeability, hydrophilicity, high water flux, and fouling resistance than pristine membranes. Likewise, degradation combined with filtration is two times more effective than alone, while crossflow mode improves the photocatalytic degradation performance of the system. GO integration in polymer membranes enhances their stability, facilitates photocatalytic processes, and gravity-driven GO membranes enable filtration of pollutants at low pressure, making membrane filtration more inexpensive. However, simultaneous removal of multip
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20704 - Energy and fuels
Result continuities
Project
<a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
CHEMOSPHERE
ISSN
0045-6535
e-ISSN
1879-1298
Volume of the periodical
neuveden
Issue of the periodical within the volume
308
Country of publishing house
GB - UNITED KINGDOM
Number of pages
37
Pages from-to
„“-„“
UT code for WoS article
000869959700002
EID of the result in the Scopus database
2-s2.0-85138146646