Solar Energy-Powered Battery Electric Vehicle charging stations: Current development and future prospect review
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU146080" target="_blank" >RIV/00216305:26210/22:PU146080 - isvavai.cz</a>
Result on the web
<a href="https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S1364032122007444" target="_blank" >https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S1364032122007444</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.rser.2022.112862" target="_blank" >10.1016/j.rser.2022.112862</a>
Alternative languages
Result language
angličtina
Original language name
Solar Energy-Powered Battery Electric Vehicle charging stations: Current development and future prospect review
Original language description
Solar energy offers the potential to support the battery electric vehicles (BEV) charging station, which promotes sustainability and low carbon emission. In view of the emerging needs of solar energy-powered BEV charging stations, this review intends to provide a critical technological viewpoint and perspective on the research gaps, current and future development of solar energy-powered BEV charging stations to fill the gap of the absence of review articles. The current technical limitations of solar energy-powered industrial BEV charging stations include the intermittency of solar energy with the needs of energy storage and the issues of carbon emission and maintenance of solar arrays. This review article also provides a detailed overview of recent implementations on solar energy-powered BEV charging stations, pointing out technological gaps and future prospects to serve as a guideline for academia and industry. The main observations from this review include the hybrid integration of other renewable energy such as wind or biogas can be a feasible solution to mitigate the intermittency of solar energy, battery swapping to mitigate the slow charging speed, utilising virtual inertia device to regulate fre-quency fluctuation that mitigate electricity blackout due to high penetration of solar or other renewable sources in power grid, and avoiding charging in the periods when the grid electricity has a high content of carbon emissions. The decentralised operations of energy management should be promoted to allow secured energy transactions and optimise charging/discharging operations. The optimal choosing criteria for the solar-enabled BEV are also provided as guidelines for industry or academia.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20701 - Environmental and geological engineering, geotechnics
Result continuities
Project
<a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
RENEWABLE & SUSTAINABLE ENERGY REVIEWS
ISSN
1364-0321
e-ISSN
—
Volume of the periodical
neuveden
Issue of the periodical within the volume
169
Country of publishing house
US - UNITED STATES
Number of pages
17
Pages from-to
„“-„“
UT code for WoS article
000863346100006
EID of the result in the Scopus database
2-s2.0-85137297091