Assessing the potential of green CdO2 nano-catalyst for the synthesis of biodiesel using non-edible seed oil of Malabar Ebony
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F23%3APU146539" target="_blank" >RIV/00216305:26210/23:PU146539 - isvavai.cz</a>
Result on the web
<a href="https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0016236122033166" target="_blank" >https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0016236122033166</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fuel.2022.126492" target="_blank" >10.1016/j.fuel.2022.126492</a>
Alternative languages
Result language
angličtina
Original language name
Assessing the potential of green CdO2 nano-catalyst for the synthesis of biodiesel using non-edible seed oil of Malabar Ebony
Original language description
Sustainable biodiesel synthesis from waste, toxic and non-edible oil seeds give a sustainable opportunity to combat energy crises and environmental depreciation. A new non-edible oil of Diospyros malabarica (Malabar Ebony) was analyzed for the synthesis of eco-friendly biodiesel using newly synthesized green nanoparticles (NPs) of Cadmium oxide (CdO2) prepared from leaf extract of Burrus papillosa via biological method followed by in situ wet impregnation approach. The highest fatty acid methyl ester (FAME) yield of 94 wt% was attained through the process of transesterification at ideal experimental conditions i.e., 1:9 M ratio of oil to methanol, catalyst loading 0.5 wt%, experiment duration 180 min and reaction temperature of 90 degrees C. Optimize biodiesel yield from Diospyros malabarica using response surface methodology was also applied. Scanning electron mi-croscopy (SEM), energy dispersive X-ray (EDX), thermogravimetric analysis and X-ray diffraction (XRD) were utilized for the characterization of newly synthesized CdO2 NPs. The findings obtained from SEM revealed that CdO2 NPs were cubic in shape. The size of CdO2 NPs was 45 nm, which obtained from XRD analysis. EDX analysis showed 83.72 % cadmium composition. In thermogravimetric analysis, 5.2 % thermal degradation was observed which revealed that CdO2 NPs have strong thermal stability. The production of FAME was confirmed by using gas chromatography-mass spectroscopy (GC-MS), nuclear magnetic resonanceand Fourier transform infrared spec-troscopy techniques. 9-Octadecenoic acid is the key fatty acid with the highest abundance in the GC-MS spec-trum. This study revealed that inedible oil seed of Diospyros malabarica and newly synthesized green NPs of CdO2 has the highest potential to be used as highly reliable cost-effective and sustainable entrants for synthesizing eco-friendly diesel which is ultimately open up the avenue for further research in the exploration and application of economical feedstock for
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20704 - Energy and fuels
Result continuities
Project
<a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
FUEL
ISSN
0016-2361
e-ISSN
1873-7153
Volume of the periodical
neuveden
Issue of the periodical within the volume
333
Country of publishing house
GB - UNITED KINGDOM
Number of pages
18
Pages from-to
„“-„“
UT code for WoS article
000886087000005
EID of the result in the Scopus database
2-s2.0-85140884787