All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Magnetorheological Fluids Subjected to Non-uniform Magnetic Fields: Experimental Characterization

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F23%3APU147021" target="_blank" >RIV/00216305:26210/23:PU147021 - isvavai.cz</a>

  • Result on the web

    <a href="https://iopscience.iop.org/article/10.1088/1361-665X/acb473" target="_blank" >https://iopscience.iop.org/article/10.1088/1361-665X/acb473</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1361-665X/acb473" target="_blank" >10.1088/1361-665X/acb473</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Magnetorheological Fluids Subjected to Non-uniform Magnetic Fields: Experimental Characterization

  • Original language description

    Magnetorheological (MR) fluids are suspensions of fine, low-coercivity, high-magnetizable particles in a continuous liquid phase. When subjected to magnetic field, the material exhibits a rapid change in the apparent viscosity of several orders of magnitude. This unique capability has been successfully exploited in automotive semi-active suspensions systems or systems for manufacturing high quality optics. In a majority of the existing systems the rheology of MR fluids is controlled by an external uniform field oriented perpendicularly to the fluid flow direction. In general, it is an inherent feature of MR systems operating in flow, shear or squeeze modes, respectively. There is an experimental evidence that the behavior of MR fluids in the so-called pinch-mode (in which the fluid is subjected to non-uniform magnetic field distributions ) clearly stands out against the remaining three operating modes. With the predecessors, the flow through the channel occurs once a pressure across it exceeds the field-dependent threshold pressure. For comparison, in pinch mode valves the magnetic flux energizes mostly the layers of the materials near the channel walls. The outcome is a change in the channel's effective diameter achieved solely via material means without changing its geometry. To study the fluid's unique behaviour in the mode the authors designed a prototype valve assembly and examined several fluid formulations of various particle concentration levels across a wide range of external (velocity, magnetic field density) stimuli in an organized effort to further comprehend the phenomenon. The obtained data indicate that the magnitude of the particular effect does not only depend on the magnitudes of the magnetic stimuli but also on the particle concentration. In general, the authors believe that the study may provide guidelines as to the selection of fluid formulations for developing novel valveless actuators utilizing MR fluids operating in pinch mode.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20204 - Robotics and automatic control

Result continuities

  • Project

    <a href="/en/project/GF21-45236L" target="_blank" >GF21-45236L: Rheology of magnetorheological fluids subjected to non-uniform magnetic fields - pinch mode</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Smart Materials and Structures

  • ISSN

    0964-1726

  • e-ISSN

    1361-665X

  • Volume of the periodical

    32

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    26

  • Pages from-to

    1-26

  • UT code for WoS article

    000920377500001

  • EID of the result in the Scopus database

    2-s2.0-85147733798